

Kontio Solar Invertteri 7 kW 3-vaihe 400 V, 50 Hz

syyskuu 2024

KÄYTTÖÖNOTON OHJEISTUS

Sisältää mm. käyttöohjeet turvallisuusvaroituksineen, sekä kunnossapito-ohjeet. Lue huolellisesti.

Sisällys

Tietoja	tästä käyttöoppaasta	4
1. Joł	ndanto	5
1.1	Invertterin ulkoiset ominaisuudet	5
1.2	Osalista	7
1.3	Invertterin käsittelyvaatimukset	8
2. Tu	rvallisuuteen liittyvät varoitukset ja ohjeet	9
2.1	Turvallisuusmerkit:	9
2.2	Turvallisuusohjeet	
2.3	Käyttöön liittyvät ohjeet	
3 Konti	o Solar -invertterin 7 kW ohjauspaneeli	
3.1 N	läyttöpaneeli	
3.2 O	hjauspaneeli ja valojen merkitykset	
3.2 P	ainikkeet	
3.3 L(CD -näyttö	
4 Konti	o Solar -invertterin asennus	
4.1 lr	nvertterin asennuspaikan valinta	
4.2 K	ontio Solar -invertterin asennus	
5 Sähkö	ökytkennät	
5.1 A	urinkopaneelien mitoitus:	
5.2 Ta	asavirtasyöttöliitännän kytkentä (DC)	
5.3 V	aihtovirtasyöttöliitännän kytkentä (AC)	
5.4 N	1aadoitusjohtimen kytkentä	
5.5 N	1aksimi ylivirtasuoja	

5.6 Invertterin valvontayhteys	
6 Invertterin käynnistys ja sammutus	
6.1 Invertterin käynnistys	
6.2 Invertterin sammutus	
6.3 Anti-PID-toiminto (valinnainen)	
7 Nollaviennin toiminto energiamittarin kautta	
7.1 Useat paneelisarjat ja rinnakkaiskytkentämittarit	
7.2 Zero-export-toiminnon käyttöönotto	
7.3 Nollavienti- toiminnon käytössä huomioitavat seikat	
7.4 Aurinkosähköjärjestelmän etäseuranta	
8 Yleinen käyttö	
8.1 Aloitusnäkymä	
8.2 Alivalikot päävalikossa	
8.2.1 Laitteen tiedot	
8.2.2 Vikahistoria	
8.2.3 ON/OFF-asetus	
8.2.4 Parametrien asetukset	
8.3 Järjestelmäparametrien asetus	
8.4 Käyttöparametrien asetus	50
8.5 Suojaparametri asetusten määrittely	
9 Korjaus ja huolto	
10 Virhetiedot ja käsittely	
10.1 Virhekoodi	
11 Tekniset tiedot	

Tietoja tästä käyttöoppaasta

Tässä käyttöohjekirjassa kuvataan asennus-, käyttö- ja ylläpitoon liittyvät ohjeet, sekä tuotetiedot. Oppaassa ei voida sisällyttää täydellistä tietoa aurinkosähköjärjestelmästä (PVjärjestelmästä).

Lue käyttöopas ja muut asiaankuuluvat asiakirjat ennen minkään toimenpiteen suorittamista invertterille. Asiakirjat tulee säilyttää huolellisesti ja niiden on oltava aina saatavilla. Sisältöä voidaan ajoittain päivittää tai muuttaa tuotekehityksen myötä. Tämän käyttöoppaan tiedot voivat muuttua ilman ennakkoilmoitusta. Uusin käyttöopas on saatavilla sähköpostitse osoitteesta service@deye.com.cn.

1. Johdanto

1.1 Invertterin ulkoiset ominaisuudet

Verkkoon kytkettävä invertteri voi muuntaa aurinkopaneelien tasasähkön (DC) vaihtosähköksi (AC), joka voidaan syöttää suoraan sähköverkkoon. Sen ulkonäkö on esitetty alla. Näihin malleihin kuuluvat SUN-3K-G05, SUN-4K-G05, SUN-5K-G05, SUN-6K-G05, **SUN-7K-G05**, SUN-8K-G05, SUN-9K-G05, SUN-10K-G05 ja SUN-12K-G05. Tämä ohjemanuaali on tarkoitettu **SUN-7K-G05** käyttäjälle.

Tästä eteenpäin näitä kutsutaan yhteisesti nimellä "invertteri".

Kuva 1.1 Kontio Solar -invertteri edestäpäin kuvattuna.

Kuva 1.2 Kontio Solar -invertteri 7 kW altapäin kuvattuna.

6

Tarkista seuraavasta listauksesta, että kaikki osat ovat mukana paketissa:

Kuva 1.2 Pakkauksen mukana tulevat tuotteet.

1.3 Invertterin käsittelyvaatimukset

Huolehdithan, että invertterin nosto tapahtuu tasaisesti molemmilta puolilta kiinniottaen.

Kuva 1.3 Havainnekuva invertterin nostamisesta ja kuljettamisesta.

2. Turvallisuuteen liittyvät varoitukset ja ohjeet

Väärä käyttö saattaa aiheuttaa sähköiskun vaaran tai palovammoja. Tämä käyttöopas sisältää tärkeitä ohjeita, joita tulee noudattaa asennuksen ja ylläpidon aikana. Lue nämä ohjeet huolellisesti ennen käyttöä ja säilytä ne tulevaa tarvetta varten.

2.1 Turvallisuusmerkit:

Varoitus:

Varoitussymboli osoittaa tärkeitä turvallisuusohjeita, joiden noudattamatta jättäminen voi johtaa vakavaan loukkaantumiseen tai kuolemaan.

Sähköiskun vaara:

Varoitus, sähköiskun vaara -symboli osoittaa tärkeitä turvallisuusohjeita, joiden noudattamatta jättäminen voi johtaa sähköiskuun.

Turvallisuusvinkki:

Huomautus-symboli osoittaa tärkeitä turvallisuusohjeita, joiden noudattamatta jättäminen voi aiheuttaa vaurioita tai johtaa invertterin tuhoutumiseen.

Korkean lämpötilan vaara:

Varoitus, kuuma pinta -symboli osoittaa turvallisuusohjeita, joiden noudattamatta jättäminen voi aiheuttaa palovammoja.

Kuva 2.1 Manuaalissa käytössä olevien turvallisuusmerkkien selitykset.

2.2 Turvallisuusohjeet

Varoitus:

Invertterin sähköasennuksen on oltava maan tai paikallisen alueen turvallisuusmääräysten mukainen.

Varoitus:

Invertteri käyttää eristämätöntä topologiarakennetta, joten ennen invertterin käyttöä on varmistettava, että DC-tulo ja AC-lähtö ovat sähköisesti eristettyjä toisistaan.

Sähköiskun vaara:

Invertterin kotelon purkaminen on kielletty, sillä se voi aiheuttaa sähköiskun vaaran, mikä voi johtaa vakavaan loukkaantumiseen tai kuolemaan. Pyydä pätevää henkilöä suorittamaan korjaukset.

Sähköiskun vaara:

Kun aurinkopaneeli altistuu auringonvalolle, se alkaa tuottaa tasajännitettä (DC). Älä koske siihen sähköiskun vaaran välttämiseksi.

Sähköiskun vaara:

Kun irrotat invertterin tulo- ja lähtöliitännät huoltoa varten, odota vähintään 5 minuuttia, jotta invertteri purkaa jäljellä olevan sähkön.

Korkean lämpötilan vaara:

Invertterin paikallinen lämpötila saattaa ylittää 80 °C käytön aikana. Älä koske invertterin koteloon.

Kuva 2.2 Invertterin käyttöön liittyviä turvallisuusohjeita.

2.3 Käyttöön liittyvät ohjeet

Kolmivaiheinen invertteri on suunniteltu ja testattu asianmukaisia turvallisuusmääräyksiä noudattaen. Se voi taata käyttäjän henkilökohtaisen turvallisuuden, mutta sähkölaitteena se voi aiheuttaa sähköiskuja tai vammoja virheellisen käytön vuoksi. Käytä laitetta seuraavien vaatimusten mukaisesti:

- 1. Invertteri tulee asentaa ja ylläpitää pätevän henkilön toimesta paikallisten standardien mukaisesti.
- Asennuksen ja huollon aikana tulee ensin katkaista AC-puoli ja sitten DC-puoli.
 Odota vähintään 5 minuuttia, että sähköiset varaukset ovat purkautuneet.
- 3. Invertterin paikallinen lämpötila saattaa ylittää 80 °C käytön aikana. Älä kosketa sitä palovammojen välttämiseksi.
- 4. Kaikki sähköasennukset on tehtävä paikallisten sähköstandardien mukaisesti, ja invertteri voidaan liittää sähköverkkoon vain paikallisen sähköntoimittajan luvalla ammattilaisten toimesta.
- 5. Ota asianmukaiset staattiset varotoimenpiteet huomioon.
- 6. Asenna invertteri paikkaan, johon lapset eivät ulotu.
- 7. Invertterin käynnistämisen vaiheet: 1) Kytke päälle AC-puolen turvakatkaisija,
 2) Kytke päälle DC-puolen turvakatkaisija, 3) Kytke päälle invertterin DC-kytkin.
- 8. Invertterin sammuttamisen vaiheet: 1) Kytke pois päältä AC-puolen turvakatkaisija, 2) Kytke pois päältä aurinkopaneelin DC-puolen turvakatkaisija,
 3) Kytke pois päältä invertterin DC-kytkin.

3 Kontio Solar -invertterin 7 kW ohjauspaneeli

3.1 Näyttöpaneeli

Kuva 3.0.1 Invertterin ohjauspaneelin näyttö.

3.2 Ohjauspaneeli ja valojen merkitykset

Etupaneelissa on neljä LED-tilan merkkivaloa. Katso kuva 3.1.

Huomiovalo	Status	Selitys
	on	Invertteri havaitsee DC-syötön
DC	off	Matala DC-syöttöjännite
	on	Verkkoon kytketty
- AC	off	Verkko ei saatavilla
	on	Normaali toiminta
Normal	off	Toiminta pysähtynyt
• • •	on	Havaittu vika tai vikailmoitus
Alarm	off	Normaali toiminta

Taulukko 3.2 Invertterin toiminnan aikaisten merkkivalojen selitykset.

3.2 Painikkeet

Invertterin etupaneelissa on neljä näppäintä (vasemmalta oikealle): Esc, Ylös, Alas ja Enter. Näppäimistön käyttöön liittyvät toiminnot ovat:

- Näytettävien vaihtoehtojen selaaminen (Ylös- ja Alas-näppäimillä);
- Säädettävien asetusten muokkaaminen (Esc- ja Enter-näppäimillä).

Kuva 3.2 Invertterin etupaneelin ohjaukseen liittyä näppäimistö.

3.3 LCD -näyttö

Kahden rivin nestekidenäyttö (LCD) sijaitsee invertterin etupaneelissa ja näyttää seuraavat tiedot:

- Invertterin toimintatilan ja tiedot;
- Huolto-viestit käyttäjälle;
- Hälytysviestit ja vikailmoitukset.

4 Kontio Solar -invertterin asennus

4.1 Invertterin asennuspaikan valinta

Invertterin sijoituspaikan valinnassa tulee ottaa huomioon seuraavat kriteerit:

VAROITUS: Tulipaloriski

- Älä asenna invertteriä alueille, joilla on helposti syttyviä materiaaleja tai kaasuja.
- Älä asenna invertteriä alueille, joissa voi esiintyä räjähdysvaarallisia olosuhteita.
- Älä asenna invertteriä pieniin suljettuihin tiloihin, joissa ilma ei voi kiertää vapaasti. Ylikuumenemisen välttämiseksi varmista aina, että ilmanvaihto invertterin ympärillä ei ole estynyt.
- Suora auringonvalo voi nostaa invertterin toimintalämpötilaa ja rajoittaa sen tehoa.
 On suositeltavaa sijoittaa invertteri siten, että se ei altistu suoraan auringonvalolle tai sateelle.
- Ylikuumenemisen välttämiseksi ympäröivän ilman lämpötila on otettava huomioon valittaessa invertterin asennuspaikkaa. Kun ympäröivä ilman lämpötila ylittää 40 °C (104 °F), suositellaan käytettäväksi aurinkosuojaa, joka minimoi suoran auringonvalon.

Kuva 4.1.1 Invertterin suositellut asennuspaikat rakennuksen julkisivulla.

- Asenna invertteri seinälle tai muuhun rakenteeseen tukevasti niin, että asennus kestää invertterin painon.
- Asenna invertteri pystysuoraan, enintään +15° kallistuskulmalla. Jos asennettu invertteri kallistuu enemmän kuin tämä ilmoitettu maksimi, lämmönpoisto voi heikentyä ja tuloksena voi olla odotettua pienempi teho.
- Jos asennat useampia inverttereitä, jätä vähintään 500 mm etäisyys jokaisen invertterin väliin ja muihin asennuspaikan rakenteisiin, Kuva 4.1.3.
- Ota huomioon, että asennusympäristö mahdollistaa invertterin LCD-näytön ja merkkivalojen selkeän näkymisen.
- Varmista riittävä ilmanvaihto, jos invertteri asennetaan tiiviiseen tilaan.

Kuva 4.1.2 Invertterin sallitut asennuskulmat.

Kuva 4.1.3 Invertterin asennuksen vaatima tilantarve eri suuntiin.

4.2 Kontio Solar -invertterin asennus

Invertteri on suunniteltu seinälle asennettavaksi. Asennettaessa tulee käyttää tarkoitukseen soveltuvia seinäkiinnikkeitä.

Kuva 4.2.1 Havainnekuva invertterin seinään asennuksesta.

Muista seinään asennettaessa:

 Sijoita asennuskonsoli sopivalle seinälle sopivaan kohtaan, kiinnitysruuvien paikkojen mukaan ja merkitse reikien sijainti porausta varten. Valitse asennukseen seinämateriaalille soveltuvat kiinnitykset.

Kuva 4.2.2 Havainnekuva invertterin seinäkiinnitystelineen asennuksesta.

- 2. Varmista, että asennusreikien sijainti seinällä vastaa asennuslevyn kohtia ja että asennusteline on pystysuorassa.
- 3. Ripusta invertteri asennustelineen yläosaan ja kiinnitä sitten invertterin jäähdytin asennuslevyyn M4-ruuveilla, jotka sisältyvät tarvikkeisiin. Näin varmistetaan, että invertteri ei liiku (Kuva 4.2.3.).

Kuva 4.2.3 Havainnekuva invertterin kiinnityksestä seinäkiinnitystelineeseen.

5 Sähkökytkennät

5.1 Aurinkopaneelien mitoitus:

Aurinkopaneelien valinnassa on otettava huomioon seuraavat parametrit:

1. Aurinkopaneelien avoimen piirin jännite (Voc) ei saa ylittää invertterin maksimaalista aurinkopaneelimuuntajan avoimen piirin jännitettä.

2. Aurinkopaneelien avoimen piirin jännitteen (Voc) on oltava korkeampi kuin invertterin minimikäynnistysjännite.

3. Aurinkopaneelien on oltava luokiteltuja luokkaan A IEC 61730 -standardin mukaisesti.

Kontio Solar -invertteri 7 kW		
Maksimi DC syöttöteho (kW):	9.1	
Maksimi DC tulojännite (V):	1000	
Käynnistyksen		
tasavirtatulojännite (V):	140	
MPPT (suurin tehopisteen	120, 1000	
seuranta) toiminta-alue (V):		
MPPT optimi toiminta-alue (V):	480–850	
MPP (suurimmat tehopisteet)	2	
seurantalaitteiden määrä:	2	
Merkkijonojen määrä per MPP-	1	
seuranta:	I	
Maksimi DC tulovirta (A):	13+13	
Maksimi oikosulkuvirta (A):	19.5+19.5	

Taulukko 5.1 Kontio Solar -invertterin (7 kW) DC-puolen luvuista.

5.2 Tasavirtasyöttöliitännän kytkentä (DC)

- Kytke verkkosyötön pääkytkin (AC) pois päältä.
- Kytke DC-erotin pois päältä.
- Liitä aurinkopaneelien syöttöliitin invertteriin.

Varoitus:

Aurinkopaneeleja käytettäessä varmista, että aurinkopaneelin PV+ ja PV- -liittimiä ei ole kytketty järjestelmän maadoituslankaan.

Turvallisuusvinkki:

Ennen kytkemistä varmista, että aurinkopaneelikentän lähtöjännitteiden napaisuus vastaa "DC+" ja "DC-" -merkintöjä.

Varoitus:

Ennen invertterin kytkemistä varmista, että aurinkopaneelikentän avoimen piirrin jännite on invertterin 1000V rajoissa.

Kuva 5.2.1 Aurinkopaneelien tasavirran syöttöliitännän kytkentää koskevia varoituksia ja turvallisuusvinkkejä.

Kontio Solarin kaksoiseristetty hienosäikeinen kuparinen aurinkopaneelikaapeli on sekä joustava että taivutus- ja hankauskestävä ja soveltuu erityisesti aurinkosähköjärjestelmien tasavirtapuolelle (DC). Kaapelit soveltuvat sisä- ja ulkokäyttöön.

Kuva 5.2.2 Havainnekuva Kontio Solar -aurinkopaneelijärjestelmiin tarkoitetun tasavirtapuolen kaapelin kerrosrakenteesta.

Kontio Solar -kaapeli 6 mm ² aurinkopaneelijärjestelmiin tasavirtapuolelle (DC)			
Ominaisuus	Tiedot		
Mitoitusjännite	U0/U = 600/1000V, AC; 1000/1800V		
Nimellisjännite	1500 VDC		
Testijännite	6500V (50Hz, 5 min)		
Ulkokuori	XLPE/XLPO, Elektronisuihkulla ristisilloitettu, UV- kestävä, 4.3 mm ²		
Sisäkuori	XLPE/XLPO, Elektronisuihkulla ristisilloitettu, 6.3 mm ²		
Johdin rakenne	Tinattu kupari		
Ympäristön max. lämpötila	-40°C +90°C		
Oikosulkuun johtava max. lämpötila	280°C		
Johtimen max. lämpötila	-40°C +125°C		
Nimellisvirta	70A		
Paloluokitus	IEC 60332-1		

Taulukko 5.2 Kontio Solar -aurinkopaneelijärjestelmiin tarkoitetun tasavirtapuolen kaapelitiedot.

Turvallisuusvinkki:

Käytä aurinkosähköjärjestelmässä ainoastaan hyväksyttyjä DC-kaapeleita.

Kuva 5.2.3 Tärkeä turvallisuusvinkki aurinkosähköjärjestelmissä käytettävistä kaapeleista.

Kuva 5.2.4 Havainnekuva tasavirtapuolen uros- ja naaraspuolen liittimistä.

Tasavirtaliittimien kokoamisvaiheet ovat seuraavat:

a) Kuori tasavirtajohdon eristettä noin 7 mm verran ja irrota liittimen suojamutteri (katso kuva 5.2.4).

Kuva 5.2.4 Esimerkki tasavirtajohdon valmistelevista toimenpiteistä.

b) Purista metalliliittimet kiinni johtimeen puristuspihdeillä, kuten kuvassa 5.2.5 on esitetty.

Kuva 5.2.5 Esimerkkikuva kontaktipinnin liittämisestä johtimeen.

c) Työnnä kontaktitappi liittimen yläosaan ja kiristä suojamutteri. (kuten kuvassa 5.2.6 on esitetty).

Kuva 5.2.6 Esimerkkikuva valmiin johdotuksen ja liittimen yhdistämisestä ja lukitsemisesta suojamutterilla.

d) Lopuksi työnnä tasavirtaliitin invertterin positiiviseen ja negatiiviseen tuloporttiin, kuten kuvassa 5.2.7 on esitetty.

Kuva 5.2.7 Esimerkkikuva valmiiden johdinliitinten kytkemisestä invertterin DC-tuloporttiin.

Varoitus:

Auringonvalo tuottaa paneelissa jännitteen, ja sarjaan kytketyt paneelit voivat aiheuttaa korkeita jännitteitä, jotka ovat hengenvaarallisia. Siksi ennen tasavirtasyöttölinjan kytkemistä aurinkopaneeli on peitettävä läpinäkymättömällä materiaalilla, ja DC-kytkimen tulee olla OFFasennossa. Muuten invertterin korkea jännite voi aiheuttaa hengenvaarallisia olosuhteita.

Kuva 5.2.8 Varoitus liittyen korkeisiin jännitteisiin valmiiksi asennettua aurinkopaneelijärjestelmää kytkettäessä.

Varoitus:

Käytä aina invertterin mukana toimitettuja DC-virtaliittimiä. Älä käytä eri valmistajien liittimiä keskenään. Maksimaalinen DC-syöttövirta saa olla enintään 20 A. Ylittämällä tämän arvon tai käyttämällä väärän valmistajan liittimiä, voi aiheutua vaurioita, jotka johtavat invertterin takuun raukeamiseen.

Kuva 5.2.9 Varoitus aurinkopaneelien asennuksessa käytettävien materiaalien oikeellisuuden merkityksestä ja paneelien mitoituksesta maksimi virran suhteen (20 A).

5.3 Vaihtovirtasyöttöliitännän kytkentä (AC)

Älä sulje DC-kytkintä sen jälkeen, kun DC-liitin on kytketty. Yhdistä AC-liitin invertterin ACpuolelle. AC-puolella on kolme vaiheliitintä, jotka mahdollistavat kätevän kytkennän. Joustavat kaapelit ovat suositeltavia helppoa asennusta varten.

Varoitus:

On kiellettyä käyttää yhtä yksittäistä katkaisijaa useille inverttereille ja kytkeä kuormaa invertterien katkaisijoiden välille.

Kuva 5.3.1 Varoitus liittyen invertterien turvakatkaisijoiden sallittuihin kuormituksiin.

AC-lähtöliitin on jaettu kolmeen osaan: liitospistoke, suojus ja tiivistysydin ja tiivistysmutteri, kuten kuvassa 5.3.2 on esitetty. Vaiheet ovat seuraavat:

Vaihe 1: Poista kaapelin tiivisterengas ja suojus AC-liittimestä vuorotellen.

Vaihe 2: Käytä kuorintatyökaluja suojakuoren ja eristyskerroksen poistamiseen ACkaapelista oikeaan pituuteen, kuten kuvassa 5.3.3 on esitetty.

Kuva 5.3.2 Havainnekuva vaihtovirtatuloliittimen (AC) rakenteesta.

Vaihe 3: Työnnä kaapeli (L1, L2, L3, N, PE) tiivistesuojukseen.

Kuva 5.3.3 Havainnekuva kaapelin johtimien kuorittavista pituuksista liitintä varten.

Kuva 5.3.4 Turvallisuuteen liittyvä varoitus.

Vaihe 4: Käytä kuusiokoloavainta ja löysää vuorotellen pistokkeen pultit. Työnnä jokainen kaapelin ydin vastaavaan liittimeen ja kiristä jokainen ruuvi. AC-liittimen kytkentäreiät on merkitty kuvassa 5.3.5.

Kuva 5.3.5 AC-liittimen johdinpaikkojen merkinnät liittimessä.

Vaihe 5: Aseta suojus ja tiivisterengas paikalleen.

Vaihe 6: Liitä liittimet invertteriin kuten kuvassa 5.3.6 on esitetty.

Kuva 5.3.6 Havainnekuva valmiin AC-liittimen liittämisestä invertteriin.

5.4 Maadoitusjohtimen kytkentä

Hyvä maadoitus auttaa kestämään ylijännitesokkeja ja parantaa EMI-suorituskykyä (Electromagnetic Interference). Siksi ennen AC-, DC- ja kommunikaatiokaapelien kytkemistä, on ensin maadoitettava kaapeli.

Yksinkertaisessa järjestelmässä maadoitetaan vain PE-kaapeli. Useiden koneiden järjestelmissä kaikkien invertterien PE-kaapelit on liitettävä samaan maadoituskuparilevyyn. jotta varmistutaan maadoituksen yhtenäisyydestä. Maadoitusjohdon asennus on esitetty kuvassa 5.4.1. Ulkoinen suojamaadoitusjohdin on valmistettu samasta metallista kuin vaihejohtimet.

Kuva 5.4.1 Havainnekuva maadoituskaapelin (PE-kaapeli) kytkemisestä invertteriin.

Varoitus:

Invertterissä on sisäänrakennettu vuotovirtatunnistuspiiri. Jos ulkoinen vuotovirtasuojalaite liitetään, sen toimintavirran on oltava yli 300 mA, muuten invertteri ei välttämättä toimi oikein.

Kuva 5.4.2 Varoitus invertterin sisäänrakennettuun vuotovirtatunnistuspiiriin liittyen.

5.5 Maksimi ylivirtasuoja

Invertterin AC-liitännän suojaamiseksi suositellaan ylivirtasuoja-asennusta ylivirran estämiseksi. Katso taulukko 5.5.

Invertteri	Nimellisteho (V)	Nimellisvirta (A)	Suojalaitteen virta (A)
SUN-3K-G05	220/230	4.6/4.4A	20
SUN-4K-G05	220/230	6.1/5.8A	20
SUN-5K-G05	220/230	7.6/7.3A	20
SUN-6K-G05	220/230	9.1/8.7A	20
SUN-7K-G05	220/230	10.7/10.2A	20
SUN-8K-G05	220/230	12.2/11.6A	20
SUN-9K-G05	220/230	13.7/13.1A	20
SUN-10K-G05	220/230	15.2/14.5A	30
SUN-12K-G05	220/230	18.2/17.4A	30

Taulukko 5.5 Suositellut ylivirtasuojan tekniset tiedot

5.6 Invertterin valvontayhteys

Invertterissä on langattoman etävalvonnan toiminto. Wi-Fi-toiminnolla varustettu invertteri on varustettu Wi-Fi-liittimellä, jolla kytketään invertteri ja verkko. Wi-Fi-liittimen käyttö, asennus, internet-yhteys, sovelluksen lataaminen ja muut prosessit on kuvattu tarkemmin ohjeissa.

Kuva 5.6.1 Havainnekuva internet-valvontaratkaisusta.

6 Invertterin käynnistys ja sammutus

Ennen invertterin käynnistämistä tulee varmistua, että invertteri täyttää seuraavat ehdot; laiminlyönti voi aiheuttaa tulipalon tai invertterin vaurioitumisen. Järjestelmän optimoinnin vuoksi suositellaan, että molemmat tuloliitännät kytketään yhtä suureen määrään aurinkopaneeleja.

a) Jokaisen aurinkopaneelisarjan avoimen piirin jännite ei saa missään olosuhteissa ylittää 1000 V DC.

b) Invertterin kunkin syötön tulisi käyttää samaa tyyppiä olevia aurinkopaneeleja sarjaan kytkettynä.

c) Aurinkopaneelijärjestelmän kokonaisteho ei saa ylittää invertterin enimmäistulotehoa, eikä yksittäisten aurinkopaneelien teho saa ylittää kunkin kanavan nimellistehoa.

6.1 Invertterin käynnistys

Kolmivaiheisen invertterin käynnistämiseksi noudata seuraavia vaiheita:

- 1. Kytke päälle AC-katkaisija.
- 2. Kytke päälle aurinkopaneelien DC-kytkin. Jos paneelit tuottavat riittävästi käynnistysjännitettä ja -tehoa, invertteri käynnistyy.
- 3. Invertteri tarkistaa ensin sisäiset parametrit ja verkon parametrit. Nestekidenäytössä näkyy invertterin itsetestaus.
- 4. Jos parametrit ovat hyväksyttävissä rajoissa, invertteri alkaa tuottaa energiaa. NORMAL-merkkivalo syttyy.

6.2 Invertterin sammutus

Invertterin sammuttamisen aikana tulee noudattaa seuraavia vaiheita:

- 1. Kytke AC-katkaisija pois päältä.
- 2. Odota 30 sekuntia, kytke DC-kytkin pois päältä (jos sellainen on), tai irrota DCtulojohtimen liitin. Invertteri sulkee LCD-näytön ja kaikki LED-valot kahden minuutin sisällä.

6.3 Anti-PID-toiminto (valinnainen)

Kuva 2.3.1 Havainnekuva aurinkosähköjärjestelmästä, jossa vasemmalla aurinkopaneelit kytkettynä invertteriin keskellä, josta mahdollisuus kytkeä päälle anti-PID-toiminto, mikä auttaa palauttamaan paneelien normaalit sähköiset olosuhteet, näin parantaen paneelien suorituskykyä ja elinikää.

Anti-PID-moduuli korjaa aurinkopaneelin PID-ilmiötä (Potential Induced Degradation) yöllä. PID-moduuli toimii aina, kun se on kytketty AC-virtaan. Jos huoltoa tarvitaan, voit kytkeä ACkytkimen pois päältä, jolloin Anti-PID-toiminto poistuu käytöstä.

Varoitus:

PID-toiminto on automaattinen. Kun DC-väylän jännite on alle 50 VDC, PID-moduuli luo 450 VDC

Varoitus:

Ennen invertterin huoltoa, kytke ensin AC-kytkin pois päältä, sitten kytke DC-kytkin pois päältä ja odota 5 minuuttia ennen kuin suoritat muita toimenpiteitä.

7 Nollaviennin toiminto energiamittarin kautta

Kun luet tätä, oletetaan, että olet suorittanut kytkennän luvun 5 vaatimusten mukaisesti. Jos invertteri on käynnissä ja haluat ottaa käyttöön nollavientitoiminnon, kytke ensin invertterin AC- ja DC-kytkimet pois päältä ja odota 5 minuuttia, kunnes invertteri on täysin purkautunut.

Kytke energiamittarin RS485-kaapeli invertterin RS485-porttiin. Suosittelemme asentamaan AC-kytkimen invertterin ja verkon väliin; AC-kytkimen tekniset tiedot määräytyvät kuorman tehon mukaan.

Jos järjestelmässä on nollaviennin toiminto (zero-export function), mittari voi auttaa varmistamaan, että kotitaloudesta verkkoon menevä sähkö ei ylitä sallittuja rajoja. Tämä voidaan tehdä mittaamalla sekä kulutus että tuotanto ja säätämällä virran määrää sen mukaan.

On tärkeää varmistaa, että kaikki järjestelmän osat ovat oikein kytkettyinä ja että sähkömittari on oikein konfiguroitu mittaamaan halutut arvot. Nämä toimenpiteet kuuluvat laillistetulle sähköasiantuntijalle.

Kuva 3.0.1 Havainnekuva aurinkosähköjärjestelmän asennusperiaatteesta.

Kuva 7.0.2 Varoitus liittyen järjestelmän kanssa käytettävistä turvakatkaisijoista.

7.1 Useat paneelisarjat ja rinnakkaiskytkentämittarit

Jos aurinkopaneelijärjestelmässä on useita sarjaan kytkettyjä paneelisarjoja ja järjestelmään kytketään useampi kuin yksi invertteri, niin tässä tapauksessa vain yksi invertteri voi toimia ensisijaisena (Master) ja muut toissijaisina (Slave). Tämä yksi, ensisijaisena toimiva invertteri voidaan asettaa estämään käänteisen virran kulun monen invertterin järjestelmässä. Järjestelmässä, jossa on useita inverttereitä, vain yhtä mittaria voidaan käyttää myös nollaviennin (zero-export function) toiminnon toteuttamiseen.

Esimerkiksi, jos järjestelmässä on useampia inverttereitä ja yksi mittari, tulee yksi inverttereistä asettaa pääinvertteriksi ja muut invertterit toissijaisiksi. Kaikkien inverttereiden on oltava yhteydessä mittariin RS485-liitännän kautta.

Kuva 7.1.1 Havainnekuva aurinkosähköjärjestelmän asennus periaatteesta useammalla invertterillä ja aurinkopaneelijärjestelmällä.

Taulukko 7.1 Huom: Valitse Mittari-vaihtoehto Suoritusparametreissä ja pidä ENTER-näppäintä painettuna päästäksesi Mittarin asetussivulle.

Nimi	Kuvaus	Vaihteluväli
Exp_Mode	AVG: Keskimääräinen kolmivaiheteho on nolla vietyä tehoa	AVG/MIN
	jakeluverkkoon.	
	MIN: Vaihe, jossa on pienin kuormitus, ei vie tehoa	
	jakeluverkkoon, kun taas kaksi muuta vaihetta voivat olla	
	ostotilassa.	
CT_Ratio	Verkkopuolen mittarin virtamuuntosuhde, kun ulkoinen	1–1000
	virtamuuntaja on käytössä.	
MFR	Verkkopuolen mittarin valmistaja. Sen Modbus-osoitteeksi	AUTO/CHNT/
	tulee asettaa 01.	EASTRON
Feedin	Syötön osuuden prosenttiosuus, joka viedään verkkoon.	0–110 %
Shunt	Rinnakkaistila. Aseta yksi invertteri Master- invertteriksi,	OFF/Master/
	muut ovat orjia (Slave). Ainoastaan pääinverteri on	Slave
	asetettava; orjat seuraavat Master-inverterin asetuksia.	
ShuntQTY	Rinnakkaisten invertterien määrä	1–16
Generator	DG-puolen mittarin toiminnon aktivointi/deaktivointi	ON/OFF
G.CT	DG-puolen mittarin virtamuuntosuhde, kun ulkoinen	1–1000
	virtamuuntaja on käytössä.	
G.MFR	DG-puolen mittarin valmistaja. Modbus-osoitteeksi tulee	AUTO/CHNT/
	asettaa 02.	EASTRON
G.Cap	DG:n kapasiteetti	1-999kW

Meter	OFF <<	Exp_Mode	AUG <<
Limiter	OFF	CT_Ratio	0
MER	ACREL	Shunt	OFF
FeedIn	0.0KW <<	ShuntQTY	1 <<
Generator	ЮМ	G.MFR	CHINT
G.CT	1 <<	G.Pout	0% < <
G.Cap	0.0KW		
Rack<<			

Kuva 7.1.1 Invertterijärjestelmän konfiguraatio.

7.2 Zero-export-toiminnon käyttöönotto

Kun edellä käydyt kytkennät ovat valmiit, seuraa näitä vaiheita käyttääksesi Zero-exporttoimintoa:

- 1. Kytke päälle AC-kytkin.
- 2. Kytke päälle DC-kytkin ja odota, että invertterin LCD-näyttö syttyy.
- 3. Paina Enter-painiketta LCD-paneelissa siirtyäksesi päävalikkoon, valitse [parameter setting] päästäksesi asetusten alavalikkoon, ja sitten valitse [running parameters], kuten kuvassa 7.2.1. Tällöin syötä oletussalasana 1234 painamalla [ylös, alas, enter] painikkeita, jolloin pääset käyttöparametrien asetusten valikkoon, kuten kuvassa 7.2.1.

System Param <<	Island	OFF
Run Param	Meter	OFF <<

Kuva 7.2.1 Havainnekuva invertterin LCD-näytöstä.

- Käytä [ylös alas] -painikkeita siirtääksesi asetuskursorin energiamittariin ja paina [enter]. Tällöin voit kytkeä energiamittarin päälle tai pois valitsemalla [ylös alas] painikkeilla. Vahvista asetukset painamalla [enter] -painiketta.
- 5. Siirry kursorilla [OK]-kohtaan ja paina [enter] tallentaaksesi asetukset ja poistuaksesi käyttöparametrien sivulta, muuten asetukset eivät jää voimaan.
- Jos asetukset on tehty onnistuneesti, voit palata valikkosivulle ja siirtyä LCD-näytöllä [etusivulle] painamalla [ylös alas] -painiketta. Jos näytössä lukee [meter power XXW], nollaviennin asetukset ovat valmiit. Katso kuva 7.2.3.

Kuva 7.2.3 Nollaviennin toiminto energiamittarin kautta päällä.

Kuva 7.2.2 Havainnekuva invertterin LCD-näytöstä.

- 7. Jos mittariteho XXW näyttää positiivista, se tarkoittaa, että jakeluverkko syöttää kuormaa, eikä aurinkopaneelien tehoa syötetä jakeluverkkoon. Jos mittariteho näyttää negatiivista, se tarkoittaa, että aurinkopaneelien energiaa myydään verkkoon tai energiamittarin kytkentäyhteydessä on ongelma.
- 8. Kun kytkentä on tehty oikein, odota invertterin käynnistymistä. Jos aurinkopaneelijärjestelmän teho vastaa nykyistä energiankulutusta, invertteri säilyttää tietyn määrän ulostuloa estääkseen verkon tehon takaisinvirtaamisen.

7.3 Nollavienti- toiminnon käytössä huomioitavat seikat

Turvallisuutesi ja invertterin rajoittimen toiminnan varmistamiseksi haluamme tuoda esille seuraavat ehdotukset ja varotoimet:

Turvallisuusvinkki:

Nollaviennin tilassa suosittelemme vahvasti, että kaksi aurinkopaneelijärjestelmää muodostetaan samalla määrällä ja kokoisilla aurinkopaneeleilla. Tämä parantaa invertterin kykyä rajoittaa tehoa.

Turvallisuusvinkki:

Jos verkon teho on negatiivinen ja invertterillä ei ole lähtötehoa, se tarkoittaa, että virtasensorin suunta on väärä. Poista invertteri käytöstä ja vaihda virtasensorin suunta.

Kuva 7.3.1 Turvallisuusvinkit liittyen aurinkosähköjärjestelmän muodostukseen ja kytkentään.

7.4 Aurinkosähköjärjestelmän etäseuranta

Jos haluat tarkastella kuormittavan järjestelmän käyttämää tehoa ja kuinka paljon energiaa (KWH) se vie verkkoon (invertterin tuottama teho käytetään ensin kuorman voimaksi ja ylijäämäenergia syötetään verkkoon), sinun tulee myös liittää mittari yllä olevan kaavion mukaisesti. Kun liittäminen on onnistuneesti suoritettu, invertteri näyttää kuormitusvoiman LCD-näytöllä. Älä kuitenkaan aseta 'Mittari päälle'. Lisäksi voit tarkastella kuormitusvoimaa etäyhteydellä, selainpohjaisesti. Järjestelmän asetukset tehdään alla olevan kuvauksen mukaisesti. Ensiksi siirry solarmanalustalle (https://pro.solarmanpv.com, tämä linkki on solarmanjälleenmyyjätilille; tai https://home.solarmanpv.com, tämä linkki on solarmanloppukäyttäjä tilille) Kuvan 7.4.1 mukaisella etusivulla klikkaa oikeasta yläkulmasta EDIT. Painettuasi etusivun oikeasta yläkulmasta EDIT, avautuu eteesi uusi sivu, josta System Type: kohdan alasvetovalikosta valitaan Self-consumption, (kuva 7.4.2).

 Back to Plants list String Inverter Solar Sta_ Dashboard 	String inverter Solar Station 1013399 Partially Offine © No Alerts Edit Tags	*	Compare Add Edit More Last up date 2021/03/22 08:40:59 UTC+08:00
Devices Alerts	Cover a pro-	Flow Graph Production Consumption Grid	
∰ About →		Production Power 9.52 kW 232% Capacity 30 kWp	Grid Power
Authorizations Layout		L	_ a
🗟 Work Order	Address YongJiang Road, Beilun, Ning		
🛱 Plan	Plant Type Residential		
Record	System Type Self-consumption Phone		Consumption Pow or 2.6kW

Kuva 7.4.1 Selainpohjaisen etäyhteyden etusivun esimerkkikuva.

		Cancel Done
Paris Info	*Address :	
System Info	YongJiang Road, Beilum, NingBo, 315806, China	
Yield Info	*Coordinates :	
Owner Into	Longitude 121 ° 46 ′ 19.03 ″ Latitude 29 ° 53 ′ 36.11 ″	
	Time Zone : Creation Time : 2020/04/08	
	(UTC+0800) Beijing,Chongqing,Hong Kong,Urumqi V	
	System Info	Collapse 🔨
	Plant Type : System Type :	
	Residential V Self-consumption V	
	▲Capacity(KWp): Azimuth(*):	
	30 0~350	
	Netom Typo	
	Solf_consumption \/	
	Self-consumption v	
	•	

Kuva 7.4.2 Painettuasi etusivun oikeasta yläkulmasta EDIT, avautuu eteesi uusi sivu, josta System Type: kohdan alasvetovalikosta valitaan Self-consumption.

Seuraavaksi siirry takaisin etusivulle klikkaamalla sivun oikeasta yläkulmasta "DONE". Tämän jälkeen näkymä selainsivullasi on kuvan 7.4.3 kuvan mukainen.

< Back to Plants list String inverter Solar Sta	String inverter Solar Station 1013199 Partially Offline © No Alerts Edit Tage				Compare	Add Edit 2021/03/22 08:40:59 U	More TC+08:00
Devices Alarts About ~	Cover and the second	Flow Graph Production Consumption Grid	Grid Power S.S.F.WV	Upda 10° 5°C/1 # 4	ntech: 2021/03/2208:35:33 ℃ °C 13°C Sunny m/s ± 05:55 ± 18:05		MON
Authorizations Layout	Address Versions Band Billing Ken		a	10	6°C 13°C	17°C	18'C
Work Urder Plan Maintenance Record	Address rongslang tood, Seitur, Ying, . Plant Type Residential Systam Type Self-consumption Phone		Consumption Power 2.6kw	s -) т 2/	™C 9℃ ┿	9°С ¥ ТНU 3/25	10°C * FRI 3/26
Flow Gra	aph Production Consumpt	tion Grid	Consumption Power 2.6kW		Grid Power 6.87 kW		

Kuva 7.4.3 Kun selainsivullasi on esimerkkikuvan kaltainen näkymä, jossa näkyvät aurinkopaneelien tuotto, kodin kulutus ja jakeluverkon lukema niin, se tarkoittaa, että kokoonpano toimii oikein.

8 Yleinen käyttö

Normaalin toiminnan aikana LCD-näyttö näyttää invertterin nykyisen tilan, mukaan lukien nykyisen tehon, kokonaisenergian, tehoajan palkkikaavion ja invertterin ID:n jne. Paina Ylösnäppäintä ja Alas-näppäintä nähdäksesi nykyisen DC-jännitteen, DC-virran, AC-jännitteen, AC-virran, invertterin jäähdyttimen lämpötilan, ohjelmistoversionumeron ja invertterin WiFiyhteyden tilan.

Kuva 8.1.1 Havainnekuva invertterin LCD-näytön valikoista, joita selaillaan ylös, - alas -näppäimillä.

Kuva 8.1.2 Havainnekuva invertterin LCD-näytön valikkorakenteesta.

Kuva 8.1.3 Havainnekuva invertterin LCD-näytön valikkorakenteesta.

8.1 Aloitusnäkymä

Alkuperäisestä näkymästä voit tarkistaa aurinkopaneelien tehon, aurinkopaneelien jännitteen, verkkojännitteen, invertterin ID:n, mallin ja muita tietoja.

Kuva 8.1.1 Havainnekuva invertterin aloitusnäkymästä.

Paina Ylös- tai Alas-näppäintä, niin voit tarkistaa invertterin DC-jännitteen, DC-virran, AC-jännitteen, AC-virran ja invertterin lämpötilan.

Total DC POWER:	PU1: 0,0V 0,0A	
ow	Power: 0W	
Kuva 8.1.2 Syöttöjännitteen ja -virran tiedot.	Kuva 8.1.3 Tuottoteho.	
UA: 234V 0,0A	OC: 0V 0,0A	
UB: 0V 0,0A	Freq: 0,00Hz	
Kuva 8.1.4 Verkon jännite- ja virtatiedot. Kuva 8.1.5 Verkon jännite ja taajuus.		

Kuva 8.1.6 E-Day: Päivittäinen tuotanto; E-Total: Kokonaistuotanto.

Kuva 8.1.7 Pvm. ja kellonaika.

Kuva 8.1.8 **LoadEp**: päivittäinen kulutus. **Total**: Kokonaisenergian kulutus.

Kuva 8.1.8 Mittariteho.

Kuva 8.1.9 **ImpEp**: Päivittäin verkosta ostettu energia; **Total**: Kokonaisuudessaan verkosta ostettu energia.

8.2 Alivalikot päävalikossa

Päävalikossa on seuraavat viisi alivalikkoa.

8.2.1 Laitteen tiedot

Näet LCD-ohjelmiston version VerA238 ja ohjauskortin ohjelmiston version Ver1400. Tässä käyttöliittymässä on parametreja, kuten nimellisteho ja viestintäosoitteet.

Kuva 8.2.1 Laitteen (invertterin) tietoja.

8.2.2 Vikahistoria

Valikkoon voidaan tallentaa kahdeksan vikahistoriaa, mukaan lukien aikaleima. Asiakas voi käsitellä niitä virhekoodin perusteella.

Kuva 8.2.2 Laitteen vikahistoriaa invertterin LCD-näytöllä.

8.2.3 ON/OFF-asetus

Kuva 8.2.3 ON/OFF-asetukset.

Kun invertteri sammutetaan, se lopettaa toimintansa välittömästi ja siirtyy valmiustilaan, minkä jälkeen se käynnistää itsediagnoosiohjelman uudelleen. Jos itsediagnoosi onnistuu, invertteri käynnistyy uudelleen.

8.2.4 Parametrien asetukset

Asetuksissa on viisi alivalikkoa: järjestelmäparametrit, käyttöparametrit, suojaparametrit ja viestintäparametrit. Kaikki nämä tiedot ovat huollon viiteaineistona.

Kuva 8.2.4 Parametrien asetusten alivalikot.

8.3 Järjestelmäparametrien asetus

Järjestelmäparametrit sisältävät aikakohdistuksen, kieliasetukset, näyttöasetukset ja tehdasasetusten palautuksen.

Time Set 🛛 <<	Display Set
Language Set	Factory Reset <
Factory Reset Set Restore <<	

Kuva 8.3.1 Järjestelmäparametrien asetuksia.

20200522 OK	English <<
08:11:21 Cancel	Polski

Kuva 8.3.2 Aika ja kieliasetukset.

Kuva 8.3.3 Kieli, - ja LCD-näytön asetukset.

Kuva 8.3.4 Viiveajan asetus, sekä tehdasasetusten palautus.

Kuva 8.3.5 Asetusten muutosten vahvistus tai peruutus.

8.4 Käyttöparametrien asetus

Varoitus:

Salasana vaaditaan—vain valtuutetuille insinööreille. Valtuuttamaton pääsy voi johtaa takuun raukeamiseen. Alkuperäinen salasana on 1234.

	Pa	ass	Wor	d
--	----	-----	-----	---

Kuva 8.4.1 Salasanan syötön näkymä.

ActiveP 0%	Vref 0,0V
Q-Mode OFF <<	ReactP 0,0% <<
PF -1,000	Fun_RCD OFF <<
Fun-ISO OFF <<	SelfCheck OS
Island OFF <<	Limiter OFF
Meter OFF	Feed-in 0% <<
MPPT Num 0	ARC ON
WindTurbine <<	OF-Derate OFF <-
UF-Uprate OFF <	WGra 0,0% << WGraStr 0,0%
PU ON	LURT OFF
PowerLim <<	HURT OFF <<
DRM OFF	Sunspec OFF <<
Sunspec OFF <<	ZVRT <<

Kuva 8.4.2 Käyttöparametrien asetusten näkymiä invertterin LCD-näytöllä.

Taulukko 8.4.1 Käyttöparametrien selitteet.

Nimi	Kuvaus	Vaihteluväli
ActiveP	Säädä ulostuloteho prosentteina [%]	0–110 %
Q-Mode	Useita reaktiivitehon ohjaustiloja	OFF/Q(P)/PF(P)
		/Q(U)/PF/Q (%)
Vref	Verkon viitejännite toiminnoille, kuten Q(U), PF(P), P(U) jne.	80-260V
ReactP	Säädä reaktiivitehon ulostulo prosentteina [%]	-100 %-+100 %
PF	Tehokertoimen säätöalue	-1-0.8~+0.8–1
Fun_ISO	Eristysvastuksen tarkastus	ON/OFF
Fun_RCD	Jäännösvirran havaitseminen	ON/OFF
Self-check	Invertterin itsediagnoosiaika. Oletusarvo on 60 sekuntia	0–1000 s
Island	Saarekkeenestosuojaus	ON/OFF
	Jos haluat käyttää nollatehomoodia, aseta mittari päälle ja	
Meter	valitse OFF nähdäksesi vain tiedot	ON/OFF
	Käytetään määrittämään, kuinka paljon tehoa voidaan	
	syöttää verkkoon, kun invertteri toimii nollaviennin tilassa.	
Feed_IN %	(Esimerkiksi, jos Feed_in = 50 % 12 kW -mallissa ja	0–100 %
	kuormateho on 5 kW, se tarkoittaa, että maksimi 6 kW	0 100 /0
	teho voidaan syöttää verkkoon sen jälkeen, kun invertteri	
	on ensin toimittanut 5 kW kuormalle.)	

Taulukko 8.4.2 Käyttöparametrien selitteet.

Nimi	Kuvaus	Vaihteluväli
ARC	Valokaari virheiden havaitsemistoiminto	ON/OFF/CLR
OF-Derate	Tuotannon säätö verkon taajuuden ylitaajuus tilanteissa	ON/OFF/HYS
UF-Uprate	Tuotannon säätö verkon taajuuden alitaajuus tilanteissa	ON/OFF
PU	Tuotannon säätö verkon jännitevaihtelu tilanteissa	ON/OFF
LVRT	Alhaisten jänniterajojen ylittämisen suojaustoiminto	ON/OFF
HVRT	Korkeiden jänniterajojen ylittämisen suojaustoiminto	ON/OFF
PowerLim	Jämäkkä/pehmeä vientirajan hallinta	ON/OFF
DRM	(Demand Response Modes) Sähköverkon kuorman	ON/OFF
	tasapainotus	
Sunspec	SunSpec -standardit	ON/OFF
WGraStr	Prosenttiosuus nimellistehosta sekunnissa	0.1 %~10 %
WGra	Prosenttiosuus nimellistehosta sekunnissa	0.1 %~10 %
ZVRT	Nollavirran tila	ON/OFF

ISO SEN	MIN	ISO SEN	HIG
Back		Back	
ISO SEN	MID<		
Back			

Kuva 8.4.3 FUN_ISO asetusnäkymä.

RCD SEN	MIN <<	ARC SEN	HIG <<
ARC SEN	MID <<	Васк	
Back			

Kuva 8.4.4 FUN_RCD asetusnäkymä.

Island SEN MIN <<	Island SEN HIG <<
Back	Back
Island SEN MID <<	
Back	

Kuva 8.4.5 Island asetusnäkymä.

ARC SEN	HIG <<	ARC SEN	MID <<
Back		Back	
ARC SEN	MIN <<		
Back			

Kuva 8.4.6 ARC asetusnäkymä.

Ylitaajuusvaste

Kontio Solar invertteri tarjoaa 'ylitaajuusvaste' -toiminnon. Paina pitkään 'OFD-tila' päästäksesi 'ylitaajuusvasteen' asetusvalikkoon.

Kuva 8.4.7 Ylitaajuusvasteen asetusten valikko.

Taulukko 8.4.3 Ylitaajuusvasteen parametrien määritelmä

Parametri	Vaihteluväli	Kuvaus
Fstr	45HZ-65HZ	Ylitaajuusvasteen aloitustaajuuden arvo
Fstop	45HZ-65HZ	Ylitaajuusvasteen lopetustaajuuden arvo
RecGra	[3,500] 0.01 %Pmax/s	Tehon palautumisnopeus (aktiivitehon
		prosenttiosuus)

Esimerkiksi, StrtPT: 50,5 Hz, StopPT: 51,5 Hz, RecPT: 50,1 Hz. Kun verkon taajuus nousee yli StartPT: 50,5 Hz, invertteri vähentää tehon ulostuloa lineaarisesti 100 % Pmax/Hz -kaltevuudella, kunnes se saavuttaa StopPT: 51,5 Hz.

Verkko-taajuus (Hz)

Kuva 8.4.8 Frq-Watt-tila ylitaajuusolosuhteissa

Ustart	0.0%	OK	Cancel <<
Usop	>> %0.0		

Kuva 8.4.10 LVRT tarkoittaa **Low Voltage Ride Through**. Tämä toiminto mahdollistaa järjestelmän toiminnan jatkumisen tai palautumisen, vaikka verkon jännite laskee tilapäisesti alhaiselle tasolle. Tämä on tärkeää sähkönjakelun vakauden ylläpitämiseksi ja järjestelmän suojaamiseksi hetkellisten jännitehäiriöiden aikana.

kontiosolar.fi

Kun taajuus ylittää Fstop: 51,5 Hz, invertterin ulostulon tulisi pysähtyä (eli 0 W). Kun taajuus on alle Fstop: 51,5 Hz, invertteri lisää tehon ulostuloa lineaarisesti 100 % Pmax/Hz - kaltevuudella, kunnes se saavuttaa Fstr: 50,5 Hz. Hysteresitilassa, kun taajuus on alle Fstop: 51,5 Hz, invertteri ei lisää tehon ulostuloa ennen kuin taajuus on alle RecPT: 50,1 Hz.

Frec	50.10Hz	RecDly	0s
RecGra	0.00% <<	RsponDy	0s <<
OK <<	Cancel		

Kuva 8.4.11 OF-Derate" tarkoittaa suomeksi "**ylitaajuuden tehon rajoitus**". Tämä viittaa siihen, kuinka paljon invertterin tehoa vähennetään ylitaajuusolosuhteissa.

Kuva 8.4.12 Invertteri tarjoaa reaktiivitehon säädön toiminnon. Valitse Reaktiivitehon säätötila ja aseta siihen liittyvät parametrit.

• "OFF" Mode

- Reaktiivitehon säätötoiminto on pois käytöstä. Tehokerroin (PF) on kiinteä +1.000.
- Q (%)
 - Säädä reaktiivitehon ulostuloa prosentteina.
- "PF" Mode
 - Tehokerroin (PF) on kiinteä, ja reaktiiviteho säädetään PF-parametrilla. PF-arvo vaihtelee 0.8 johtavasta 0.8 viivästyttävään.
 - o Johtava: invertteri imee reaktiivitehoa verkosta.
 - Viivästyttävä: invertteri syöttää reaktiivitehoa verkkoon.
- "Q(U)" Mode
 - Invertterin reaktiivitehon ulostulo vaihtelee verkon jännitteen mukaan.
- "Q(P)" Mode
 - Invertterin tuottamaa reaktiivitehoa säädetään invertterin aktiivitehon perusteella.
- "PF(P)" Mode
 - Tehokerroin (PF) säädetään invertterin aktiivitehon perusteella.

WGraStr	0.0%	WGraStr	0.0%
PU	OFF <-	PU	ON <-
U1	0.0× <<	U2	>> %0,0
P1	×0, 0	P2	×0, 0
U3	>> %0.0	U4	>> ×0.0
P3	×0, 0	P4	×0.0
Ti	0s		
OK	Cancel <<		

Kuva 8.4.13 PU-tilan säätäminen.

Kuva 8.4.14 Aktiivitehon säätökäyrä PU-käyränä.

Taulukko	844 PU	"-tilan	narametrien	selitykset
radianto	0. 1. 1 1 0	uuun	parametriciteri	Setty ASet.

Parametri	Vaihteluväli	Kuvaus
P1	0 %-110 % Pn	Arvo P/Pn kohdassa (P1, U1) PU-tilan käyrällä
U1	0 % -150 % Vref	Verkon jänniteraja kohdassa (P1, U1) PU-tilan käyrällä
P2	0 %-110 % Pn	Arvo P/Pn kohdassa (P2, U2) PU-tilan käyrällä
U2	0 % -150 % Vref	Verkon jänniteraja kohdassa (P2, U2) PU-tilan käyrällä
P3	0 %-110 % Pn	Arvo P/Pn kohdassa (P3, U3) PU-tilan käyrällä
U3	0 % -150 % Vref	Verkon jänniteraja kohdassa (P3, U3) PU-tilan käyrällä
P4	0 %-110 % Pn	Arvo P/Pn kohdassa (P4, U4) PU-tilan käyrällä
U4	0 % -150 % Vref	Verkon jänniteraja kohdassa (P4, U4) PU-tilan käyrällä
Ti	0–1000 s	PU-käyrän säätöaika sekunteina (aika, joka tarvitaan
		95 % muutoksen saavuttamiseen).

ActiveP	0%	Pstart	•> ×0.0
QMode	Q(U) <-	Pstop	20.0%
RmpTime	0s	UrefAuto	0s
RmpUref	0 <<	PtUsed	0 <<
U1	>> ×0,0	U2	0.0% <<
Q1	×0, 0	Q2	×0.0
U3	>> %0.0	U4	>> ×0,0
Q3	0.0%	U4	×0,0
U5	>> %0.0	UG 1	30.0% <<
Q5	×0,0	QG	30.0%
QG	0.0%		
OK	Cancel <<		

Kuva 8.4.15 Q(U)-tilan säätäminen.

Kuva 8.4.16 Reaktiivitehon säätökäyrä Q(U) -käyränä.

Taulukko 8.4.5 "Q(U)"-tilan parametrien selitykset.

Parametri	Vaihteluväli	Kuvaus
Pstart	0 %-130 % Rate out power	QU-tila alkaa, kun aktiiviteho on suurempi kuin tämä arvo
Pstop	0 %-130 % Rate out power	QU-tila loppuu, kun aktiiviteho on pienempi kuin tämä arvo
Q1	-60 %-60 % Q/Pn	Arvo Q/Pn kohdassa (U ₁ , Q ₁) Q(U)-tilan käyrällä
V1	0–110 % VRated	Verkon jänniteraja kohdassa (U1, Q1) Q(U)-tilan käyrällä
Q2	-60 %-60 % Q/Pn	Arvo Q/Pn kohdassa (U ₂ , Q ₂) Q(U)-tilan käyrällä
V2	0–110 % VRated	Verkon jänniteraja kohdassa (U ₂ , Q ₂) Q(U)-tilan käyrällä
Q3	-60 %-60 % Q/Pn	Arvo Q/Pn kohdassa (U ₃ , Q ₃) Q(U)-tilan käyrällä
V3	0–110 % VRated	Verkon jänniteraja kohdassa (U₃, Q₃) Q(U)-tilan käyrällä
Q4	-60 %-60 % Q/Pn	Arvo Q/Pn kohdassa (U ₄ , Q ₄) Q(U)-tilan käyrällä
V4	0–110 % VRated	Verkon jänniteraja kohdassa (U₄, Q₄) Q(U)-tilan käyrällä
Q5	-60 %-60 % Q/Pn	Arvo Q/Pn kohdassa (U ₅ , Q ₅) Q(U)-tilan käyrällä
V5	0–110 % VRated	Verkon jänniteraja kohdassa (U₅, Q₅) Q(U)-tilan käyrällä
Q6	-60 %-60 % Q/Pn	Arvo Q/Pn kohdassa (U ₆ , Q ₆) Q(U)-tilan käyrällä
V6	0–110 % VRated	Verkon jänniteraja kohdassa (U ₆ , Q ₆) Q(U)-tilan käyrällä
RMpTime	0–1000 s	Lisää tai vähennä aikaa, joka tarvitaan reaktiivitehon saavuttamiseksi määritettyyn arvoon käyrällä

Kuva 8.4.17 Invertterin loistehon tuotantoa ohjataan invertterin pätöteholla. Loistehon säätökäyrä Q(P) -tilassa.

ActiveP	20.0%	P1	>> ×0, 0
QMode	QP <-	Q1	×0,0
P2	>> %0.0	P3	>> %0.0
02	×0.0	Q3	0.0%
P4	>> ×0.0	P5	>> %0.0
Q4	×0.0	Q5	0.0%
P6	>> ×0.0	OK	< Cancel
QG	×0,0		

Kuva 8.4.18 Q(P)-tilan säätäminen.

Parametri	Vaihteluväli	Kuvaus
P1	0 %-100 % Pn	Tehoarvo/Pn pisteessä (P1, Q1) Q(P)-tilan käyrällä
Q1	-60 % -60 % Q/Pn	Reaktiivitehoarvo pisteessä (P1, Q1) Q(P)- käyrällä
P2	0 %-100 % Pn	Tehoarvo/Pn pisteessä (P2, Q2) Q(P)-käyrällä
Q2	-60 % -60 % Q/Pn	Reaktiivitehon arvo pisteessä (P2, Q2) Q(P)- käyrällä
P3	0 %-100 % Pn	Tehoarvo/Pn pisteessä (P3, Q3) Q(P)-käyrällä
Q3	-60 % -60 % Q/Pn	Reaktiivitehon arvo pisteessä (P3, Q3) Q(P)- käyrällä
P4	0 %-100 % Pn	Tehoarvo/Pn pisteessä (P4, Q4) Q(P)-käyrällä
Q4	-60 % -60 % Q/Pn	Reaktiivitehon arvo pisteessä (P4, Q4) Q(P)- käyrällä
P5	0 %-100 % Pn	Tehoarvo/Pn pisteessä (P5, Q5) Q(P)-käyrällä
Q5	-60 % -60 % Q/Pn	Reaktiivitehon arvo pisteessä (P5, Q5) Q(P)- käyrällä
P6	0 %-100 % Pn	Tehoarvo/Pn pisteessä (P6, Q6) Q(P)-käyrällä
Q6	-60 % -60 % Q/Pn	Reaktiivitehon arvo pisteessä (P6, Q6) Q(P)- käyrällä

Kuva 8.4.19 Tehofaktorin säätökäyrä PF(P)-tilassa.

Ustart	×0.0	P1	0.0%
Vstop	0.0%	PF1	-1.000 <<
P2	×0.0	P3	0.0%
PF2	-1.000 <<	PF3	-1.000 <<
P4	×0.0	P5	0.0%
PF4	-1.000 <<	PF5	-1.000 <<
P6	0.0%	RmpTime	0s
PF6	-1.000 <<	OK	Cancel <<

Kuva 8.4.20 Ulostulo-tehofaktoria ohjataan inverterin aktiivisella tehoarvolla. PF(P) -tilan säätäminen.

Taulukko 8.4.7 "PF(P)"-tilan parametrien selitykset.

Parametri	Vaihteluväli	Kuvaus
Vstart	0–150 % Vref	PFP-tila aktivoituu, kun verkkojännite on
		suurempi kuin Vstart
Vstop	0–150 % Vref	PFP-tila poistuu käytöstä, kun verkkojännite on
		pienempi kuin Vstop
P1	0–110 % Pn	Tehoarvo pisteessä (PF1, P1) PF(P)-käyrällä
PF1	0.8 leading - 0.8 lagging	Tehoarvo pisteessä (PF1, P1) PF(P)-käyrällä
P2	0–110 % Pn	Tehoarvo pisteessä (PF2, P2) PF(P)-käyrällä
PF2	0.8 leading - 0.8 lagging	Tehoarvo pisteessä (PF2, P2) PF(P)-käyrällä
P3	0–110 % Pn	Tehoarvo pisteessä (PF3, P3) PF(P)-käyrällä
PF3	0.8 leading - 0.8 lagging	Tehoarvo pisteessä (PF3, P3) PF(P)-käyrällä
P4	0–110 % Pn	Tehoarvo pisteessä (PF4, P4) PF(P)-käyrällä
PF4	0.8 leading - 0.8 lagging	Tehoarvo pisteessä (PF4, P4) PF(P)-käyrällä
P5	0–110 % Pn	Tehoarvo pisteessä (PF5, P5) PF(P)-käyrällä
PF5	0.8 leading - 0.8 lagging	Tehoarvo pisteessä (PF5, P5) PF(P)-käyrällä
P6	0–110 % Pn	Tehoarvo pisteessä (PF6, P6) PF(P)-käyrällä
PF6	0.8 leading - 0.8 lagging	Tehoarvo pisteessä (PF6, P6) PF(P)-käyrällä
		PFF-käyrän aika sekunneissa (aika, joka
KMpTime	0–1000 s	tarvitaan 95 %
		muutoksen saavuttamiseen)

8.5 Suojaparametri asetusten määrittely

Varoitus:

Vain insinööreille. Asetamme parametrit turvallisuusvaatimusten mukaan, joten asiakkaiden ei tarvitse säätää niitä. Salasana on sama kuin 8.4.1 Käytön parametrit.

Kuva 8.5.1 Varoitus liittyen turvallisuusvaatimuksiin.

Kuva 8.5.2 Oletussalasana sama 1234 kuin aiemmassa kohdassa (Kuva 8.4.1).

Braszil	EN50549-1
EN50549-1-PL <<	IEC61727 <<
CUSTOM	UDE0126
UDE4105 <<	Spain <<
CEI_0-21	699
G98 <<	NBT32004-B <<
Australia-A	Australia-C
Australia-8 <<	New Zealand <<
MEA	Norway
PEA <<	Suitzerland <<
R25	
OK Cancel <<	

Kuva 8.5.3 Verkon standardi. Tämä termi viittaa yleensä sähköverkon vaatimuksiin ja sääntöihin, jotka määrittelevät, miten sähkölaitteiden ja järjestelmien tulee toimia verkon kanssa yhteensopivasti.

OverVolt Lv3	OverVolt Lv3
Point 240,0V <<	Delay 1000ms <<
OverVolt Lv2	OverVolt Lv2
Point 240,00 <<	Delay 1000ms <<
OverVolt Lv1	OverVolt Lv1
Point 240,00 <<	Delay 1000ms <<
UnderVolt Lv1	UnderVolt Lv1
Point 235,0V <<	Delay 1000ms <<
UnderVolt Lv2	UnderVolt Lv2
Point 235,00 <<	Delay 1000ms <<
UnderVolt Lv3	UnderVolt Lv3
Point 235,0V <<	Delay 1000ms <<
OverFreq Lv3	OverFreq Lv3
Point 52,00Hz <<	Delay 1000ms <<
OverFreq Lv2	OverFreq Lv2
Point 52,00Hz <<	Delay 1000ms <<
OverFreq Lv1	OverFreq Lv1
Point 52,00Hz <<	Delay 1000ms <<
UnderFreq Lv1	UnderFreq Lv1
Point 48,00Hz <<	Delay 1000ms <<

UnderFreq Lv2	UnderFreq Lv2
Point 48,00Hz <<	Delay 1000ms <<
UnderFreq Lv3	UnderFreq Lv3
Point 48,00Hz <<	Delay 1000ms <<
Reconnection	Reconnection
Vup 0,00 <<	Vdo⊎n 0,0V <<
Reconnection	Reconnection
Reconnection Fup 0,00Hz <<	Reconnection Fdo⊍n 0,00Hz <<
ReconnectionFup0,00Hz <	ReconnectionFdoun0,00Hz <
ReconnectionFup0,00Hz <	ReconnectionFdown0,00Hz <
ReconnectionFup0,00Hz <	ReconnectionFdown0,00Hz <<OV10 MinutesPoint0,0% <<OKCancel <<

Kuva 8.5.4 Ole hyvä ja aseta oikeat verkkoasetukset vastaamaan nykyisen maasi verkko- ja säädösmääräyksiä. Jos et ole varma, ota yhteyttä asentajaasi.

Kuva 8.5.5 Kommunikaatioasetusten määrittäminen.

9 Korjaus ja huolto

Rivimuuntaja ei tarvitse säännöllistä huoltoa. Kuitenkin roskat tai pöly voivat vaikuttaa jäähdytyselementin lämmönsiirtokykyyn. On parempi puhdistaa se pehmeällä harjalla. Jos pinta on liian likainen ja vaikuttaa LCD-näytön ja LED-valon näkyvyyteen, voit puhdistaa sen kostealla liinalla.

Korkean lämpötilan vaara:

Kun laite on käynnissä, paikallinen lämpötila on liian korkea ja kosketus voi aiheuttaa palovammoja. Sammuta invertteri ja odota, että se jäähtyy, ennen kuin suoritat puhdistus- tai huoltotoimenpiteet.

Turvallisuusvinkki:

Liuottimia, hankaavia materiaaleja tai syövyttäviä aineita ei saa käyttää invertterin osien puhdistamiseen.

10 Virhetiedot ja käsittely

Invertteri on suunniteltu kansainvälisten verkkoon liittämistä koskevien turvallisuus- ja sähkömagneettisen yhteensopivuus vaatimusten mukaisesti. Ennen markkinoille pääsyä invertteri on läpikäynyt useita testejä, joilla on varmistettu optimaalinen ja luotettava toiminta.

10.1 Virhekoodi

Jos ilmenee vika, LCD-näyttö näyttää hälytysviestin. Tässä tapauksessa invertteri saattaa lopettaa energian syöttämisen verkkoon. Hälytyksen kuvaus ja vastaavat hälytysviestit on lueteltu taulukossa 10.1.

Virhekoodi	Kuvaus	OnGrid — Kolmivaihe		
F01	DC-tulojen polariteetin kääntövirhe	Tarkista PV-tulojen polariteetti.		
F02	DC-eristyksen impedanssin pysyvä virhe	Tarkista invertterin maadoituskaapeli.		
F03	DC-vuotovirran virhe	Koodi ilmestyy harvoin. Ei ole koskaan tapahtunut aiemmin.		
F04	Maasulkuvirhe GFDI	Tarkista aurinkopaneelin ulostuloliitäntä.		
F05	Lue muistin virhe	Virhe muistin (EEPROM) lukemisessa. Käynnistä invertteri uudelleen, jos virhe jatkuu. Ota yhteyttä asentajaasi tai Deye- huoltoon.		
F06	Kirjoita muistin virhe	Virhe muistiin (EEPROM) kirjoittamisessa. Käynnistä invertteri uudelleen, jos virhe jatkuu. Ota yhteyttä asentajaasi tai Deye- huoltoon.		
F07	GFDI sulake palanut	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		
F08	GFDI maadoituskosketuksen vika	Koodi ilmestyy harvoin. Ei ole tapahtunut tähän mennessä.		
F09	IGBT vaurioitunut liiallisesta jännitehäviöstä	Koodi ilmestyy harvoin. Ei ole tapahtunut tähän asti.		
F10	Lisäkäyttökatkaisijan virransyötön vika	 Se ilmoittaa, että DC 12V ei ole olemassa. Käynnistä invertteri uudelleen. Jos virhe jatkuu, ota yhteyttä asentajaasi tai Deye- huoltoon. 		
F11	AC-pääkatkaisijan virheet	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		
F12	AC-lisäkatkaisijan virheet	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		
F13	varattu	 Yhden vaiheen tai AC-jännitteen havaintokomponentin vika tai releet eivät ole sulkeutuneet. Käynnistä invertteri uudelleen. Jos virhe jatkuu, ota yhteyttä asentajaasi tai Deye- huoltoon. 		

Virhekoodi	Kuvaus	OnGrid — Kolmivaihe			
F14	DC-firmwaren ylivirta	Koodi ilmestyy harvoin. Ei ole tapahtunut			
		aiemmin.			
		1. Sisäinen AC-anturi tai havaintokytkentä			
		ohjauskortilla tai liitäntäkaapeli saattaa olla			
F15	AC-firmwaren ylivirta	löysällä.			
		2. Käynnistä invertteri uudelleen. Jos virhe			
		jatkuu, ota yhteyttä asentajaasi tai Deye-			
		huoltoon.			
		1. Tämä vika tarkoittaa, että keskimääräinen			
		vuotovirta on yli 300 mA. Tarkista, että DC-			
		virtalähde tai aurinkopaneelit ovat kunnossa,			
		ja tarkista sitten 'Test data' -> 'diL'-arvo, joka			
F16	GFCI (RCD) AC-vuotovirran	on noin 40. Tarkista sen jälkeen			
	virhe	vuotovirtasensori tai -piiri (alla oleva kuva).			
		Testidatan tarkistaminen vaatii suuren LCD-			
		näytön.			
		2. Käynnistä invertteri uudelleen. Jos virhe			
		jatkuu, ota yhteyttä asentajaasi tai Deye-			
		huoltoon.			
F17	Kolmivaihevirran	Koodi ilmestyy harvoin. Ei ole tapahtunut			
	ylivirtavirhe	aiemmin.			
		1. Tarkista AC-anturi tai havaintokytkentä			
		ohjauskortilla tai liitäntäkaapeli.			
F18	AC-laitteiston ylivirtavirhe	2. Käynnistä invertteri uudelleen tai suorita			
		tehdasasetusten palautus. Jos virhe jatkuu,			
		ota yhteyttä asentajaasi tai Deye-huoltoon.			
510	Kaikkien laitteistovikojen	Koodi ilmestyy harvoin. Ei ole tapahtunut			
FI9	yhteenveto	aiemmin.			
		1. Tarkista, että aurinkopaneelin			
		ulostulovirta on sallituissa rajoissa.			
		2. Tarkista DC-virransensori ja sen			
		havaintokytkentä.			
F20	DC-ylivirta laitteistossa	3. Tarkista, onko invertterin FW-versio			
		yhteensopiva laitteiston kanssa.			
		4. Käynnistä invertteri uudelleen. Jos virhe			
		jatkuu, ota yhteyttä asentajaasi tai Deye-			
		huoltoon.			
F21	DC-vuotovirran vika	Koodi ilmestvy harvoin. Fi ole tapahtuput			
		aiemmin.			
F22	Hätäpysäytys (jos	Ota vhtevttä asentajaasi saadaksesi apua			
	pysäytyspainike on)				
		1			

Virhekoodi	Kuvaus	OnGrid — Kolmivaihe
F23	AC-vuotovirta on tilapäinen ylivirta	 Tämä vika tarkoittaa, että vuotovirta on äkillisesti yli 30 mA. Tarkista, että DC- virtalähde tai aurinkopaneelit ovat kunnossa, ja tarkista sitten 'Test data' -> 'diL'-arvo, joka on noin 40. Tarkista sen jälkeen vuotovirtasensori tai -piiri. Testidatan tarkistaminen vaatii suuren LCD-näytön. Käynnistä invertteri uudelleen. Jos virhe jatkuu, ota yhteyttä asentajaasi tai Deye- huoltoon.
F24	DC-eristyksen impedanssin vika	 Tarkista Vpe-vastus pääkortilla tai havaintokytkentä ohjauskortilla. Tarkista, että aurinkopaneelit ovat kunnossa. Usein tämä ongelma johtuu aurinkopaneeleista. Tarkista, että aurinkopaneeli (alumiinikehys) on hyvin maadoitettu ja invertteri on hyvin maadoitettu. Avaa invertterin kansi ja tarkista, että sisäinen maadoituskaapeli on kunnolla kiinnitetty koteloon. Tarkista, ovatko AC/DC-kaapelit ja liittimet maadoitettu tai onko eristys vaurioitunut. Käynnistä invertteri uudelleen. Jos virhe jatkuu, ota yhteyttä asentajaasi tai Deye- huoltoon.
F25	DC-palautevirhe	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.
F26	DC-väylä on epätasapainossa	 Tarkista, onko 'BUSN'-kaapeli tai ohjainkortin virtalähdekaapeli löysällä. Käynnistä invertteri uudelleen. Jos virhe jatkuu, ota yhteyttä asentajaasi tai Deye- huoltoon.
F27	DC-pään eristysvirhe	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.
F28	Invertterin 1 DC-korkea virhe	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.
F29	AC-kuormakytkimen vika	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.

Virhekoodi	Kuvaus	OnGrid — Kolmivaihe		
F30	AC-pääkatkaisijan vika	 Tarkista releet ja releiden AC-jännite. Tarkista releiden ohjauskytkentä. Tarkista, onko ohjelmisto yhteensopiva tämän invertterin kanssa (vanhoissa inverttereissä ei ole releiden havaitsemistoimintoa). Käynnistä invertteri uudelleen. Jos virhe jatkuu, ota yhteyttä asentajaasi tai Deye- huoltoon. 		
F31	Releen avonaisen piirin vika	 Ainakin yksi rele ei sulkeudu. Tarkista releet ja niiden ohjaussignaali. (Vanhoissa inverttereissä ei ole releiden havaitsemistoimintoa.) Käynnistä invertteri uudelleen. Jos virhe jatkuu, ota yhteyttä asentajaasi tai Deye- huoltoon 		
F32	Invertterin 2 DC-korkea virhe	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		
F33	AC-ylivirta	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		
F34	AC-virran ylikuormitus	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		
F35	Ei AC-verkkoa	 Tarkista AC-verkon jännite. Tarkista AC- jännitteen havaintokytkentä. Tarkista, että AC-liitin on hyvässä kunnossa. Tarkista, että AC-verkko on jännitteeltään normaali. Käynnistä invertteri uudelleen. Jos virhe jatkuu, ota yhteyttä asentajaasi tai Deye- huoltoon. 		
F36	AC-verkon vaihevirhe	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		
F37	AC-kolmivaihejännitteen epätasapainovika	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		
F38	AC-kolmivaihevirran epätasapainovika	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		
F39	AC-ylivirta (yksi sykli)	 Tarkista AC-virransensori ja sen kytkentä. Käynnistä invertteri uudelleen. Jos virhe jatkuu, ota yhteyttä asentajaasi tai Deye- huoltoon. 		
F40	DC-ylivirta	Koodi ilmestyy harvoin. Ei ole tapahtunut aiemmin.		

Virhekoodi	Kuvaus	OnGrid — Kolmivaihe
		Tarkista AC-jännitesuojauksen asetukset.
F41	AC-linjan W, U ylijännite	Tarkista myös, onko AC-kaapeli liian ohut.
		Tarkista jännite-ero LCD-näytön ja mittarin
		välillä.
		Tarkista AC-jännitesuojauksen asetukset.
F42	AC-linjan W, U alijännite	Tarkista jännite-ero LCD-näytön ja mittarin
		välillä. Tarkista myös, että AC-kaapelit ovat
		kunnolla ja oikeaoppisesti kiinnitettyjä.
		Tarkista AC-jännitesuojauksen asetukset.
F43	AC-linjan V, W ylijännite	Tarkista, onko AC-kaapeli liian ohut. Tarkista
		jännite-ero LCD-näytön ja mittarin välillä.
		Tarkista AC-jännitesuojauksen asetukset.
F44	AC-linjan V, W alijännite	Tarkista jännite-ero LCD-näytön ja mittarin
		välillä. Tarkista myös, että AC-kaapelit ovat
		kunnolla kiinnitettyinä.
		Tarkista AC-jännitesuojauksen asetukset.
F45	AC-linjan U, V ylijännite	Tarkista, onko AC-kaapeli liian ohut. Tarkista
		jännite-ero LCD-näytön ja mittarin välillä.
F46	AC-linjan U, V alijännite	Tarkista AC-jännitesuojauksen asetukset.
F47	AC-ylitaajuus	Tarkista taajuussuojauksen asetukset.
F48	AC-alitaajuus	Tarkista taajuussuojauksen asetukset.
F49	U-vaiheen verkon virran	Koodi ilmestyy harvoin. Ei ole tapahtunut
	DC-komponentin ylivirta	aiemmin.
F50	V-vaiheen verkon virran DC-	Koodi ilmestyy harvoin. Ei ole tapahtunut
	komponentin ylivirta	aiemmin.
F51	W-vaiheen verkon virran	Koodi ilmestyy harvoin. Ei ole tapahtunut
	DC-komponentin ylivirta	aiemmin.
F52	AC-induktorin A, vaiheen	Koodi ilmestyy harvoin. Ei ole tapahtunut
	virran DC-virran korkea taso	aiemmin.
F53	AC-induktorin B, vaiheen	Koodi ilmestyy harvoin. Ei ole tapahtunut
	virran DC-virran korkea taso	aiemmin.
F54	AC-induktorin C, vaiheen	Koodi ilmestyy harvoin. Ei ole tapahtunut
	virran DC-virran korkea taso	aiemmin.
		1. Tarkista aurinkonaneelien jännite ja Ubus-
		jännite sekä niiden havaintokytkentä Jos
F55	DC-vävlän jännite on lijan	aurinkonaneelien svöttöjännite vlittää rajan
133	korkea	vähennä aurinkonaneelien määrää sariassa
		2 Tarkista Ubus-iännite ICD-nävtöstä

Virhekoodi	Kuvaus	OnGrid — Kolmivaihe
		1. Tämä tarkoittaa, että PV-syöttöjännite on
		alhainen, ja tämä tapahtuu aina aikaisina
		aamuaikoina.
		2. Tarkista PV-jännite ja Ubus-jännite. Kun
F56	DC-väylän jännite on liian	invertteri on käynnissä ja näyttö näyttää F56,
	matala	saattaa olla, että ajuri on kadonnut tai
		firmware täytyy päivittää.
		3. Käynnistä invertteri uudelleen. Jos virhe
		jatkuu, ota yhteyttä asentajaasi tai Deye-
		huoltoon.
F57	AC-käänteinen virta	AC-käänteinen virta
F58	AC-verkon U-vaiheen	Koodi ilmestyy harvoin. Ei ole tapahtunut
	ylivirta	aiemmin.
F59	AC-verkon V-vaiheen	Koodi ilmestyy harvoin. Ei ole tapahtunut
	ylivirta	aiemmin.
F60	AC-verkon W-vaiheen	Koodi ilmestyy harvoin. Ei ole tapahtunut
	ylivirta	aiemmin.
F61	Reaktori A-vaiheen ylivirta	Koodi ilmestyy harvoin. Ei ole tapahtunut
		aiemmin.
F62	Reaktori B-vaiheen ylivirta	Koodi ilmestyy harvoin. Ei ole tapahtunut
		aiemmin.
		1. Tarkista PV-moduulin kaapeliyhteydet ja
F63	sähkökaari-virhe	korjaa vika.
		2. Ota yhteyttä meihin, jos et saa tilaa
		palautumaan normaaliksi.
		1. Tarkista lämpötilasensori. Tarkista, onko
F64	IGBT lämpötilanluovuttimen	firmware yhteensopiva laitteiston kanssa.
	korkea lämpötila	Varmista, että invertteri on oikea malli.
		2. Käynnistä invertteri uudelleen. Jos virhe
		jatkuu, ota yhteyttä asentajaasi tai Deye-
		huoltoon.

Turvallisuusvinkki:

Jos invertterissäsi ilmenee jokin taulukossa 10–1 näkyvistä vikakodeista, ja vaikka käynnistät koneen uudelleen, ongelma ei ratkea, ota yhteyttä jakelijaamme ja toimita seuraavat tiedot:

- 1. Invertterin sarjanumero;
- 2. Invertterin jakelija/tukku (jos saatavilla);
- 3. Asennuspäivämäärä;
- 4. Ongelman kuvaus (sisältäen LCD-näytön virhekoodin ja LED-merkkivalojen tilan);
- 5. Yhteystietosi.

11 Tekniset tiedot

Malli	SUN-3K- SUN-4K- SUN-5K- SUN-6 G05 G05 G05 G05 G05			SUN-6K- G05	
Aurinkopaneelisarjan					
syöttötiedot					
Suurin aurinkopaneelien	3,9	5,2	6,5	7,8	
syöttöteho (kW)					
Suurin aurinkopaneelien		10	<u></u>		
syöttöjännite (V)		10	00		
Käynnistysjännite (V)		14	40		
MPPT-jännitealue (V)		120—	-1000		
Täyskuorman MPPT-jännitealue (V)		350-	850		
Nimellinen aurinkopaneelien					
syöttöjännite (V)		60	00		
Suurin syötön oikosulkuvirta (A)		19,5-	+19,5		
Suurin aurinkopaneelien		10	10		
syöttövirta (A)	13+13				
MPP					
seurantalaitteiden määrä	2				
Merkkijonojen määrä per MPP-		4	4		
seuranta	1+1				
Suurin invertterin palautusvirta	0				
paneelille	0				
AC lähtö tiedot					
Nimellislähtöteho (kW)	3	4	5	6	
Maksimi aktiivinen teho (kW)	3,3 4,4 5,5 6,6			6,6	
Nimellinen vaihtovirtaverkon	4.5/4.4	61/50	7 (7)	0 1 /0 7	
lähtövirta (A)	4.6/4.4	6.1/5.8	7.6/7.3	9.1/8.7	
Maksimi AC lähtövirta (A)	5/4.8 6.7/6.4 7.6/7.3 9.1/8.7				
Nimellinen lähtöjännite/alue (V)	220/380, 230/400 0.85Un-1.1Un				
Käyttövaihe	3 L+N+PE				
Verkon taajuusalue	50Hz/45Hz-55Hz, 60Hz/55Hz-65Hz				
Lähtötehokerroin	0,8, mikä johtaa 0,8 viiveeseen				
Verkkovirta THD (Harmoninen					
kokonaissärö)	<3 %				
DC injektiovirta (mA)	<0.5 %ln				

Hyötysuhde			
Maksimi hyötysuhde	98.1 %	98.2 %	
Euro hyötysuhde	97.5 %	97.6 %	
MPPT (suurin tehopisteen seuranta) hyötysuhde	>99	9 %	
Laitteiston suojaus			
DC-polariteetin käänteinen liitossuojaus	Ку	llä	
AC-ulostulon ylivirtasuojaus	Ку	llä	
AC-ulostulon ylijännitesuojaus	Ку	llä	
AC-ulostulon oikosulkusuojaus	Ку	llä	
Lämpösuojaus	Ку	llä	
DC-liitännän eristysvastuksen seuranta	Kyllä		
DC-komponentin seuranta	Kyllä		
Maadoitusvian virtaseuranta	Kyllä		
Sähkönjakeluverkon seuranta	Kyllä		
Saarekkeensuojauksen seuranta	Kyllä		
Maasulkuvikojen havaitseminen	Kyllä		
DC-syöttökytkin	Kyllä		
Ylijännitesuojaus kuorman pudotusta vastaan	Kyllä		
Jäännösvirran (RCD) havaitseminen	Ку	llä	
Ylijännitesuojaustaso	TYPE II(DC), TYPE II(AC)		

Ominaisuudet	
Käyttöliittymä	RS485/RS232 /WiFi/LAN
Näyttö	LCD 1602
IP-luokitus	IP 65
Liittimet	MC-4
Yleistiedot	
Käyttölämpötila	-25 — +60°C,>tehonrajoitus 45 °C
Käyttöympäristön kosteus	0–100 %
Sallittu korkeus (m)	4000 m
Melupäästö (dB)	<45 dB
Invertterin topologia	Eristämätön
Ylijännitekategoria	OVC II(DC), OVC III(AC)
Koko (leveys*korkeus*syvyys	283 $ imes$ 463 $ imes$ 178 (liittimiä ja kiinnikkeitä lukuun ottamatta)
mm)	
Paino (kg)	11
Jäähdytyskonsepti	luonnollinen jäähdytys
Verkkoliitäntästandardi	IEC 61727, IEC 62116, CEI 0-21, EN 50549, NRS 097,
	RD 140, UNE 217002, G98, G99, VDE 4105
Turvallisuus EMC	IEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
(Sähkömagneettinen	
yhteensopivuus) /standardi	

Malli	SUN-7K-	SUN-8K-	SUN-9K-	SUN-10K-	SUN-12K-
	G05	G05	G05	G05	G05
Aurinkopaneelisarjan					
syöttötiedot		-		_	
Suurin aurinkopaneelien	9,1	10,4	11,7	13	15,6
syöttöteho (kW)					
Suurin aurinkopaneelien			1000		
syöttöjännite (V)					
Käynnistysjännite (V)			140		
MPPT-jännitealue (V)			120—1000)	
Täyskuorman MPPT-			480—850		
jännitealue (V)					
Nimellinen			600		
aurinkopaneelien					
syöttöjännite (V)					
Suurin syötön			19,5+19,5		
oikosulkuvirta (A)					
Suurin aurinkopaneelien	13+13				
syöttövirta (A)					
MPP	2				
seurantalaitteiden määrä					
Merkkijonojen määrä per		1+1			
MPP-seuranta					
Suurin invertterin	0				
palautusvirta paneelille					

AC lähtö tiedot					
Nimellislähtöteho (kW)	7	8	9	10	12
Maksimi aktiivinen teho (kW)	7,7	8,8	9,9	11	13,2
Nimellinen vaihtovirtaverkon	10.7/10.2	12.2/11.6	13.7/13.1	15.2/14.5	18.2/17.4
lähtövirta (A)					
Maksimi AC lähtövirta (A)	11.7/11.2	13.4/12.8	15/14.4	16.7/16.0	20/19.2
Nimellinen lähtöjännite/alue		220/380, 2	230/400 0.8	5Un-1.1Un	
(V)					
Käyttövaihe			3 L+	N+PE	
Verkon taajuusalue		50Hz/45Hz-	-55Hz, 60Hz	:/55Hz-65H:	Z
Lähtötehokerroin		0,8, mikä	johtaa 0,8 v	viiveeseen	
Verkkovirta THD (Harmoninen			<3 %		
kokonaissärö)					
DC injektiovirta (mA)			<0.5 %ln		
Hyötysuhde					
Maksimi hyötysuhde			98.3 %		
Euro hyötysuhde			97.8 %		
MPPT (suurin tehopisteen	>99 %				
seuranta) hyötysuhde					
Laitteiston suojaus					
DC-polariteetin käänteinen			Kyllä		
liitossuojaus					
AC-ulostulon ylivirtasuojaus	Kyllä				
AC-ulostulon ylijännitesuojaus	Kyllä				
AC-ulostulon oikosulkusuojaus	Kyllä				
Lämpösuojaus	Kyllä				
DC-liitännän eristysvastuksen			Kyllä		
seuranta					
DC-komponentin seuranta			Kyllä		
Maadoitusvian virtaseuranta			Kyllä		
Sähkönjakeluverkon seuranta	Kyllä				
Saarekkeensuojauksen			Kyllä		
seuranta					
Maasulkuvikojen			Kyllä		
havaitseminen					
DC-syöttökytkin			Kyllä		
Ylijännitesuojaus kuorman			Kyllä		
pudotusta vastaan					
Jäännösvirran (RCD)			Kyllä		
havaitseminen					
Ylijännitesuojaustaso		TYPE	II(DC), TYPE	II(AC)	

Ominaisuudet	
Käyttöliittymä	RS485/RS232 /WiFi/LAN
Näyttö	LCD 1602
IP-luokitus	IP 65
Liittimet	MC-4
Yleistiedot	
Käyttölämpötila	-25 — +60°C,>tehonrajoitus 45 °C
Käyttöympäristön kosteus	0–100 %
Sallittu korkeus (m)	4000 m
Melupäästö (dB)	<45 dB
Invertterin topologia	Eristämätön
Ylijännitekategoria	OVC II(DC), OVC III(AC)
Koko (leveys*korkeus*syvyys	283 $ imes$ 463 $ imes$ 178 (liittimiä ja kiinnikkeitä lukuun ottamatta)
mm)	
Paino (kg)	11
Jäähdytyskonsepti	luonnollinen jäähdytys
Verkkoliitäntästandardi	IEC 61727, IEC 62116, CEI 0-21, EN 50549, NRS 097,
	RD 140, UNE 217002, G98, G99, VDE 4105
Turvallisuus EMC	IEC/EN 61000-6-1/2/3/4, IEC/EN 62109-1, IEC/EN 62109-2
(Sähkömagneettinen	
yhteensopivuus) /standardi	

12 EU-vaatimustenmukaisuusvakuutus

EU-direktiivien soveltamisalassa

- · Sähkömagneettinen yhteensopivuus 2014/30/EU (EMC)
- · Pienjännitedirektiivi 2014/35/EU (LVD)
- · Tiettyjen vaarallisten aineiden käytön rajoittaminen 2011/65/EU (RoHS)

NINGBO DEYE INVERTER TECHNOLOGY CO., LTD. vahvistaa täten, että tässä asiakirjassa kuvatut tuotteet täyttävät yllä mainittujen direktiivien keskeiset vaatimukset ja muut asiaankuuluvat säännökset. Koko EU-vaatimustenmukaisuusvakuutuksen ja sertifikaatin voi löytää osoitteesta: <u>https://www.deyeinverter.com/download/#string-inverter</u>.

Deye

230927007 www.deyeinverter.com

EU Declaration of Conformity

Product: Grid-connected PV Inverter

Models: SUN-3K-G05-1;SUN-3K-G05;SUN-4K-G05;SUN-5K-G05;SUN-6K-G05; SUN-7K-G05;SUN-8K-G05;SUN-9K-G05;SUN-10K-G05;SUN-12K-G05; SUN-15K-G05;SUN-3K-G05-1-P;SUN-3K-G05-P;SUN-4K-G05-P; SUN-5K-G05-P;SUN-6K-G05-P;SUN-7K-G05-P;SUN-8K-G05-P; SUN-9K-G05-P;SUN-10K-G05-P;SUN-12K-G05-P;SUN-15K-G05-P

Name and address of the manufacturer: Ningbo Deye Inverter Technology Co., Ltd. No. 26 South YongJiang Road, Daqi, Beilun, NingBo, China

This declaration of conformity is issued under the sole responsibility of the manufacturer. Also this product is under manufacturer's warranty.

This declaration of conformity is not valid any longer: if the product is modified, supplemented or changed in any other way, as well as in case the product is used or installed improperly.

The object of the declaration described above is in conformity with the relevant Union harmonization legislation: The Low Voltage Directive (LVD) 2014/35/EU;the Electromagnetic Compatibility (EMC) Directive 2014/30/EU;the restriction of the use of certain hazardous substances (RoHS) Directive 2011/65/EU.

References to the relevant harmonized standards used or references to the other technical specifications in relation to which conformity is declared:

LVD:	
EN 62109-1:2010	•
EN 62109-2:2011	•
EMC:	
EN IEC 61000-6-1:2019	•
EN IEC 61000-6-2:2019	•
EN IEC 61000-6-3:2021	•
EN IEC 61000-6-4:2019	•
EN IEC 61000-3-2:2019+A1:2021	•
EN 61000-3-3:2013/A2:2021/AC:2022-01	•
EN IEC 61000-3-11:2019	•
EN IEC 61000-3-12:2011	•
EN 55011:2016/A2:2021	•

230927007 www.deyeinverter.com

Nom et Titre / Name and Title:

Au nom de / On behalf of: Date / Date (yyyy-mm-dd): A / Place: Bard Dai Senior Standator Pre Gentification Engineer NINGBO THE INVERTER TECHNOLOGY CO.,LTD.

Ningbo Deye Inverter Technology Co., Ltd. 2023-09-27 Ningbo, China

NINGBO DEYE INVERTER TECHNOLOGY CO., LTD

Add.: No.26 South YongJiang Road, Daqi, Beilun, NingBo, China.

Fax.: +86 (0) 574 8622 8957

Tel.: +86 (0) 574 8622 8852

E-mail.: service@deye.com.cn

Web.: www.deyeinverter.com

